Browse Publications Technical Papers 2011-38-0015
2011-06-13

Calculations of Ice Shapes on Oscillating Airfoils 2011-38-0015

The desire to operate rotorcraft in icing conditions has renewed the interest in developing high-fidelity analysis methods to predict ice accumulation and the ensuing rotor performance degradation. A subset of providing solutions for rotorcraft icing problems is predicting two-dimensional ice accumulation on rotor airfoils. While much has been done to predict ice for fixed-wing airfoil sections, the rotorcraft problem has two additional challenges: first, rotor airfoils tend to experience flows in higher Mach number regimes, often creating glaze ice which is harder to predict; second, rotor airfoils oscillate in pitch to produce balance across the rotor disk. A methodology and validation test cases are presented to solve the rotor airfoil problem as an important step to solving the larger rotorcraft icing problem. The process couples Navier-Stokes CFD analysis with the ice accretion analysis code, LEWICE3D. The process is applied to several airfoil cases for which there are experimental data.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Large Scale Propeller Testing in the NRC 9 Metre Wind Tunnel in Canada

830751

View Details

TECHNICAL PAPER

The Water Film Weber Number in Glaze Icing Scaling

2007-01-3295

View Details

TECHNICAL PAPER

Numerical Simulation of Aircraft and Variable-Pitch Propeller Icing with Explicit Coupling

2019-01-1954

View Details

X