Browse Publications Technical Papers 2011-38-0102

FENSAP-ICE: 3D Simulation, and Validation, of De-icing with Inter-cycle Ice Accretion 2011-38-0102

The assessment of an unsteady approach for the simulation of in-flight electro-thermal de-icing using a Conjugate Heat Transfer (CHT) technique is presented for a NACA0012 wing and a swept wing. This approach is implemented in the FENSAP-ICE in-flight icing system, and provides simulation capabilities for the heat transfer and ice accretion phenomena occurring during in-flight de-icing with power cycling through several heater pads. At each time step, a thermodynamic balance is established between the water film, the ice layer and the solid domains. The ice shape is then modified according to ice accretion and melting rates. Numerical results show the complex interactions between the water film, the ice layer and the heating system. The NACA0012 validation test case compares well against one of the very few experimental de-icing test cases available in the open literature. The other simulation displays the importance of 3D effects in analyzing the de-icing of a tapered, swept and twisted wing, while providing significant data for the design of the system.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 40% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.