Browse Publications Technical Papers 2012-01-0134

Comparison of Diesel Combustion CFD Models and Evaluation of the Effects of Model Constants 2012-01-0134

This paper describes numerical simulations that compare the performance of two combustion CFD models against experimental data, and evaluates the effects of combustion and spray model constants on the predicted combustion and emissions under various operating conditions. The combustion models include a Characteristic Time Combustion (CTC) model and CHEMKIN with reduced chemistry models integrated in the KIVA-3Vr2 CFD code. The diesel spray process was modeled using an updated version of the KH-RT spray model that features a gas jet submodel to help reduce numerical grid dependencies, and the effects of both the spray and combustion model constants on combustion and emissions were evaluated. In addition, the performance of two soot models was compared, namely a two-step soot model, and a more detailed model that considers soot formation from PAH precursors. Experimental data from four different diesel engines under different operating conditions were used to establish and validate the computation cases. The results show that the simpler KIVA-CTC combustion model can provide acceptable results over a wide range of operating conditions and with much higher computation efficiency than the KIVA-CHEMKIN model. However, the soot predictions are not as good, and more model constant tuning is required. The investigation reveals which model constants are more important than others during the model calibration processes, and guidelines are provided to simplify the model calibration process. Based on the results, general ranges of the relevant model constants are presented and a procedure is recommended to help calibrate models against experimental data.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Validation of a Newly Developed Quasi-Dimensional Combustion Model - Application on a Heavy Duty DI Diesel Engine


View Details


Simulation and Analysis of In-Cylinder Soot Formation in a Low Temperature Combustion Diesel Engine Using a Detailed Reaction Mechanism


View Details


Standardized Gasoline Compression Ignition Fuels Matrix


View Details