Browse Publications Technical Papers 2012-01-0142

Investigation of Pilot and Multiple Injection Parameters on Mixture Formation and Combustion Characteristics in a Heavy Duty DI-Diesel Engine 2012-01-0142

The mechanism of NOx and soot reduction using different pilot and multiple injection strategies has been computationally studied in a heavy duty DI Diesel engine. A designed set of advanced injection schemes with various variables and exhaust gas recirculation rate (up to 10%) have been analyzed. The CFD model was firstly calibrated against experimental data for a part load operation at 1600 rpm. The computational models used were found to predict the correct trends obtained in the experiment. The study demonstrated the potential and explained the mechanism of the combination of EGR and multiple injection to reduce both soot and NOx emissions together with improved fuel economy. The results showed that injecting a small percentage of fuel in the pilot injection pulse (e.g., 5%) accompanied with adequate fuel in the second injection pulse (e.g., 25%) can reduce the ignition delay and the premixed combustion period, leading to lower temperature and NOx emission while not increasing soot formation in the late combustion phase. It has been also found that increase the number of injection pulses (up to five separate injection pulses per engine cycle) can be more beneficial for the reduction of NOx and soot emissions compared with split injection cases, however the amount of BSFC in these cases should be considered as a main disadvantage.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Experimental Validation of a Surrogate Fuel for Diesel


View Details


Reduction of Heavy Duty Diesel Engine Emission and Fuel Economy with Multi-Objective Genetic Algorithm and Phenomenological Model


View Details


The Influence of Boost Pressure on Emissions and Fuel Consumption of a Heavy-Duty Single-Cylinder D.I. Diesel Engine


View Details