Browse Publications Technical Papers 2012-01-0244
2012-04-16

Numerical Simulation and Analysis of Closed-Loop Driver/Articulated Vehicle Dynamic Systems 2012-01-0244

This paper presents a preliminary investigation of the closed-loop driver/articulated vehicle directional dynamics using numerical simulation. To date, a lot of attention has been focused on investigating the closed-loop directional dynamics of driver/single-unit vehicle systems. Little effort has been paid to examining the closed-loop directional dynamics of driver/articulated vehicle systems. Compared with single-unit passenger cars, multi-unit articulated vehicles have unique directional dynamic characteristics. Generally, a driver's behavior for an articulated vehicle is different from that for a passenger car. To investigate the impact of driver behavior on articulated vehicle directional dynamics, three driver models based on dynamic responses of tractor, trailer and combined tractor/trailer, respectively, have been developed. The three driver models are tested and compared through the numerical simulations of a low-speed path-following and a high-speed lateral stability test maneuvers for a driver/articulated vehicle system. The numerical studies are conducted in a Simulink-TruckSim simulation environment in such a way that the driver model is designed using Simulink from Matlab software, and the articulated vehicle model is constructed in TurckSim multibody dynamic package, then, the computer simulation can be implemented by combining the driver and vehicle models. With the benchmark comparisons, the distinguished features of different driver models are revealed and their applicability is demonstrated.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
We also recommend:
TECHNICAL PAPER

A Smart Jersey Highway Barrier with Portal for Small Animal Passage and Driver Alert

2013-01-0620

View Details

TECHNICAL PAPER

Traction Control Logic Based on Extended Kalman Filter for Omni-directional Electric Vehicle

2012-01-0251

View Details

TECHNICAL PAPER

Mathematical Model to Simulate Safe Handling of Automobile-Tire Combinations and Driver's Skill Interactions

740069

View Details

X