Browse Publications Technical Papers 2012-01-0714

Intake Manifold Length Effects on Turbocharged Gasoline Downsizing Engine Performance and Fuel Economy 2012-01-0714

Downsizing of the spark ignition engine is accepted as a key contributor to reducing fuel consumption. Turbocharged engines are becoming commonplace in passenger vehicles, replacing naturally aspirated larger capacity engines. However, turbocharged engines have typically suffered from “lag” during transient operation. This perceived effect is a combination of the low speed steady state torque and a slower rate to reach maximum torque during a load step. In order to increase customer acceptance of downsized concepts it is vital that the low speed torque and transient response are optimized.
Variable Length Intake Manifolds (VLIM) have long been an established method of improving the full load performance of naturally aspirated engines. The manifold length being “tuned” to provide a high-pressure pulse at intake valve closing to maximize cylinder filling and deliver improved performance. This same approach could be applied to turbocharged engines to improve low speed torque and transient response.
This paper investigates the affects of VLIM technology applied to a 1.4-litre turbocharged gasoline direct injection engine. It demonstrates improvements in low speed torque and transient response achieved through tuning. It also investigates the tuning options available at high speed on a turbocharged engine and demonstrates the fuel consumption benefits that can be achieved through varying manifold runner length.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Effect of Intake Port Design on the Flow Field Stability of a Gasoline DI Engine


View Details


Effect of Pulsating Flow Characteristics on Performance and Surge Limit of Automotive Turbocharger Compressors


View Details


Variable Valve Closure Timing for Load Control and the Otto Atkinson Cycle Engine


View Details