Browse Publications Technical Papers 2012-01-0869

Review on the Effects of Dual-Fuel Operation, Using Diesel and Gaseous Fuels, on Emissions and Performance 2012-01-0869

In recent years the automotive industry has been forced to reduce the harmful and pollutant emissions emitted by direct-injected diesel engines. To accomplish this difficult task various solutions have been proposed. One of these proposed solutions is the usage of gaseous fuels in addition to the use of liquid diesel. These gaseous fuels have more gasoline-like properties, such as high octane numbers, and thereby are resistant against auto-ignition. Diesel on the other hand, has a high cetane number which makes it prone to auto-ignition. In this case the gaseous fuel is injected in the inlet manifold, and the diesel is direct injected in the cylinder at the end of the compression stroke. Thereby the diesel fuel spontaneously ignites and acts as an ignition source. The main goals for the use of a dual-fuel operation with diesel and gaseous fuels are the reduction of particulate matter (PM) and nitrogen oxides (NOx) emission. Furthermore, the application of such a dual-fuel operation can offer potential economic and efficiency advantages. Depending on the gaseous fuel used, these goals can be achieved. In general, dual-fuel combustion of gaseous fuels and diesel decreases soot emissions compared with normal diesel combustion except for syngas. Furthermore, increasing load and/or gaseous fuel content leads to a further decrease in soot emissions. Both the application natural gas and liquefied petroleum gas as gaseous fuel offer the possibility to diminish nitrogen oxide emissions probably due to homogenous mixture compositions and/or decreased mixture temperatures. However, using hydrogen or syngas in dual-fuel combustion tends to increase nitrogen oxide emissions; this might be due to the higher flame temperatures and combustion rates of these gasses. Furthermore, the emissions of unburned hydrocarbons and carbon monoxides tend to increase for all evaluated gaseous fuels with dual fuel combustion mainly due to incomplete combustion of mixture trapped in crevices. Efficiencies of the different gaseous fuels are in the same order of magnitude. Some seem to lead to slight efficiency improvements (hydrogen and LPG) while others result in a slight decrease (natural gas and syngas). However, the significant price difference of natural gas and LPG compared to diesel can offer a considerable economic advantage.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Characteristics of Exhaust Emissions from a Heavy-Duty Diesel Engine Retrofitted to Operate in Methane/Diesel Dual-Fuel Mode


View Details


Experimental Investigation of a Diesel Engine Operating on Natural Gas / Diesel Dual-Fuel Mode


View Details


Effect of Hot Exhaust Gas Recirculation on the Combustion Characteristics and Particles Emissions of a Pilot-Ignited Natural Gas Engine


View Details