Browse Publications Technical Papers 2012-01-1856
2012-09-10

TruPLAN Advanced Simulation for Material Kinematics Behavior during Manufacturing Layup Processes 2012-01-1856

The objective of an engineering analysis - a numerical model and simulation designed to represent a specific manufacturing process - is not simply to determine the behavior and impact of that process on a specific product. If that were the case, extensive product testing would be a simpler and cheaper solution. The real objective of an engineering analysis is to use its associated numerical models and simulations to predict the impact of important design and manufacturing parameters on the behavior of the final product in terms of performance and cost. When dealing with advanced composite materials, such parameters include: material, surface topology, layup strategy, ply stacking, among many possibilities. Designers today are faced with the challenge of optimizing composite parts and, should redesign be required, having enough reliable data at hand to justify the redesign's necessity.
A multidisciplinary manufacturing analysis tool for designers, TruPLAN's Advanced Material Kinematics Kernel models how a given composite material behaves during the computation of manufacturing process strategies for automated layup technologies, like: fiber placement, tape laying, and robotics. TruPLAN's Advanced Kinematics Kernel models composite material behavior in terms of design criteria - surface topology, fiber direction, angle deviation, gap/overlap - and manufacturing constraints such as: material compaction, layup temperature, material tension, feed rates, material feeding, machine kinematics configuration. TruPLAN's Advanced Material Kinematics Kernel empowers designers to test advanced composite materials against new or existing design strategies for automated layup technologies (Fiber Placement, Tape Layer, Robotics layup), to discover optimum combinations of materials and manufacturing equipments to ensure desired production rates and costs.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
We also recommend:
JOURNAL ARTICLE

Predicting Impact Damage, Residual Strength and Crashworthiness of Composite Structures

2016-01-0497

View Details

JOURNAL ARTICLE

Evaluation of Steering Gearbox Station to Improve Industrial Safety and Productivity through Ergonomics

2020-28-0330

View Details

TECHNICAL PAPER

Door Seal Behavior Prediction and Enhancement in Performance Using Digital Simulation

2021-26-0387

View Details

X