Browse Publications Technical Papers 2012-01-1862

Unique Non-Orthogonal TCP Intersecting AFP Axes Design 2012-01-1862

Automated Fiber Placement (AFP) machines typically consist of 3 linear and 3 rotary axes of motion in order to manufacture complex shapes. These axes are generally orthogonal and semi-coupled. In these designs, a linear axis move will not affect the rotary axes orientation whereas a rotary axis move will affect the Tool Center Point (TCP) location with respect to the linear axes position. The wide range of motion required to maintain the compaction-axis normality needed for carbon fiber layup tends to prevent all of the rotational axes from passing through the TCP. The location and arrangement of these rotational axes has a great effect on the AFP machine performance and controllability during high speed layup. This paper presents a unique kinematic AFP axes design consisting of replacing the 3 orthogonal rotary axes with 3 tool-center-point-intersecting coupled-axes which decouple the linear axes from the rotary axes.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 43% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.