Browse Publications Technical Papers 2012-01-2017

Design of Direct and Indirect Liquid Cooling Systems for High- Capacity, High-Power Lithium-Ion Battery Packs 2012-01-2017

Battery packs for plug-in hybrid electrical vehicle (PHEV) applications can be characterized as high-capacity and high-power packs. For PHEV battery packs, their power and electrical-energy capacities are determined by the range of the electrical-energy-driven operation and the required vehicle drive power. PHEV packs often employ high-power lithium-ion (Li-ion) pouch cells with large cell capacity in order to achieve high packing efficiency. Lithium-ion battery packs for PHEV applications generally have a 96SnP configuration, where S is for cells in series, P is for cells in parallel, and n = 1, 2 or 3. Two PHEV battery packs with 355V nominal voltage and 25-kWh nominal energy capacity are studied. The first pack is assembled with 96 70Ah high-power Li-ion pouch cells in 96S1P configuration. The second pack is assembled with 192 35Ah high-power Li-ion pouch cells in 96S2P configuration. The battery temperatures are managed with a direct liquid cooling system for the 96S1P pack and with an indirect liquid cooling system for the 96S2P pack. Procedures are discussed for the cooling system design for both direct liquid cooling and indirect liquid cooling packs. A design criterion is proposed for obtaining a uniform coolant flow distribution in the battery pack. Thermal behavior of the cells in both battery packs are simulated using 3D finite element models under 4C continuous discharge from a fully charged state to 90% depth of discharge, simulating the worst condition for the PHEV battery pack utilization.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
We also recommend:

Thermal Analysis of a Li-ion Battery System with Indirect Liquid Cooling Using Finite Element Analysis Approach


View Details


Life Estimation and Thermal Management of a 48V Mild-Hybrid Battery Pack


View Details


Thermal Behavior of Two Commercial Li-Ion Batteries for Plug-in Hybrid Electric Vehicles


View Details