Browse Publications Technical Papers 2012-01-2126
2012-10-22

Generic Architecture for a Self-Powered Smart Sensor Interface in Avionic Application 2012-01-2126

In this paper, we present a universal architecture for a reliable self-powered Smart Sensor Interface (SSI) in avionic applications. The SSI module consists of data acquisition and signal excitation paths. The power recovery unit harvests energy from data field bus to power up the SSI module entirely. Using integrated CMOS technologies, the interface is flexible and configurable to be integrated with and fully controlled by Transducer Interface Module (TIM) introduced in IEEE1451 standard. Employing data converters within the signal paths makes the SSI well suited for full digital control over specifications of the excitation signal and data processing algorithms. The interface can be used along with various types of position sensors including legacy R/LVDT, MEMS-based and optical ones. The analog parts of the SSI are implemented using IBM 0.13 μm CMOS process while its digital modules are realized in FPGAs. The Power Conversion Chain (PCC) of the SSI is also presented and its complex components are modeled in Verilog-A using a top-down modeling approach. The models make it possible to study over power transfer and distribution throughout the SSI. Simulation results prove that the proposed power recovery scheme could procure and deliver significant amount of power to SSI which makes the structure self-powered.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 17% off list price.
Login to see discount.
We also recommend:
TECHNICAL PAPER

An Evaluation of Two Methodologies for Lens Distortion Removal when EXIF Data is Unavailable

2017-01-1422

View Details

TECHNICAL PAPER

Fast and Reliable Process for the Development of Automotive Embedded Software

2000-01-C080

View Details

TECHNICAL PAPER

A Numerical Methodology to Compute Temperatures of a Rotating Cardan Shaft

2013-01-0843

View Details

X