Browse Publications Technical Papers 2012-36-0231

Reduction of Experimental Data Points in the Base Calibration by Estimation of Engine Maps Using Regularized Basis Function Neural Networks 2012-36-0231

The estimation of calibration maps for engine control systems is not a trivial problem. Approximating these maps depends on experimental data obtained on an engine dynamometer, which may require a great number of test points. There are also some working regions in which steady state measurements cannot be taken. Thus, the map surface must be estimated from a finite set of data that does not cover the whole working conditions. High order polynomial models tend to produce oscillating functions, and low order ones do not present an accurate model. Therefore, this paper presents a method for the approximation of engine calibration maps with a Neural Network model, using a Regularized Radial Basis Function.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 43% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.