Browse Publications Technical Papers 2013-01-0169

Dynamic Simulation under Intermediate Strain Rates of Mechanical Components Made of an Elastomeric Matrix and a Metal Reinforcement 2013-01-0169

This work studies the dynamic simulation of mechanical components under intermediate strain rates. The study is centered on components composed of an elastomeric material and a metal reinforcement. Two different constitutive models were proposed to simulate the elastomeric material dynamic behavior. The proposed models were the Maxwell and the Cowper & Symonds models. For the components' simulation, the material characteristics were obtained through a multivariable identification process based on the experimental data acquired from a dynamic material analysis (DMA). For the generalized Maxwell model the system frequency response was analyzed, and for the Cowper & Symonds model a finite element analysis was performed. It was found that the Cowper & Symonds model implementation by finite element analysis allows a good fit of the material properties but has a high computational cost. On the other hand, the Maxwell model implementation by frequency representation consists on a reduced order model with low computational cost to perform the simulation of simple mechanical components.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 43% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.