Browse Publications Technical Papers 2013-01-0308

Virtual Performance and Emissions Mapping for Diesel Engine Design Optimization 2013-01-0308

This paper builds upon recent publication (SAE Technical Paper 2011-01-1388, 2011, doi:10.4271/2011-01-1388) and outlines the on-going development of an advanced simulator for virtual engine mapping and optimization of engine performance, combustion and emissions characteristics.
The model is further advanced through development of new sub-models for turbulent mixing, multiple injection events, variable injection pressures, engine breathing and gas exchange, as well as particulates formation and oxidation. The result is a simulator which offers engine design and performance data typically associated with 1D thermodynamic engine cycle simulations but with the "physics-based" model robustness usually associated with 3D CFD methods. This combination then enables efficient optimization of engine design with respect to engine performance, combustion characteristics and exhaust gas emissions.
As a demonstration, a detailed method to parameterize (calibrate) the advanced PDF-based model is presented followed by application to three case studies: 1) a concept study of a heavy-duty diesel engine, examining the impact of increased injection pressure and lower compression ratio to meet engine design constraints and Stage IV/Tier 4 exhaust gas emission limits for both NOx and PM, 2) examining the performance of both the proposed model and 3D-CFD to simulate heat release and exhaust gas emissions in a HSDI diesel engine, 3) performance of the model over a full load-speed map in terms of combustion and NOx emissions. The results demonstrate the robustness of the model compared to experimental observations and equivalent performance compared to more human resource and CPU cost-intensive 3D-CFD simulations.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Study on Reduction of Diesel Engine Out Emission through Closed Loop Control based on the In-Cylinder Pressure with EGR Model


View Details


Development of Automatic Trap Oxidizer Muffler Systems


View Details


Basic Investigations on the Prediction of Spray-Wall and Spray-Fluid Interaction for a GDI Combustion Process


View Details