Browse Publications Technical Papers 2013-01-0341

Fuel Enrichment Control System by Catalyst Temperature Estimation to Enable Frequent Stoichiometric Operation at High Engine Speed/Load Condition 2013-01-0341

Fuel economy can be improved by reducing engine displacement, thanks to the resulting smaller friction losses and pumping losses. However, smaller engines frequently operate at high-engine speed and high-load, when pressure on the accelerator increases during acceleration and at high speed.
To protect exhaust system components from thermal stress, exhaust gas temperature is reduced by fuel enrichment.
To improve fuel economy, it is important to increase the frequency of stoichiometric operation at high-engine speed and high-load.
Usually, the start timing of fuel enrichment is based upon temperature requirements to protect the catalyst. In the high-engine speed and high-load zone, the threshold temperature of catalyst protection is attained after some time because of the heat mass. Therefore, stoichiometric operation can be maintained until the catalyst temperature reaches the threshold temperature.
The existing system is operated stoichiometrically by estimating the time when the catalyst temperature will reach threshold temperature. Currently, catalyst temperature is not measured directly and the estimation of catalyst temperature is not accurate, therefore the engine can only be operated stoichiometrically-allowing an adequate margin-until the catalyst temperature reaches threshold temperature.
The system reported in this paper was developed to achieve better fuel enrichment than existing systems by the installation of a high-accuracy exhaust gas temperature sensor to the inlet of the manifold catalyst to accurately estimate the catalyst temperature based on exhaust temperature.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Engine Mapping Methodology


View Details


An Integrated Powertrain (IPT) Model - Stage 2: Systems Integration, Supervisory Control and Simulation of Emissions Control Technology


View Details


Development of Emission Control Systems to Enable High NOx Conversion on Heavy Duty Diesel Engines


View Details