Browse Publications Technical Papers 2013-01-0381

Lightweighting Impacts on Fuel Economy, Cost, and Component Losses 2013-01-0381

In 2011, the United States imported almost half of its petroleum. Lightweighting vehicles reduces that dependency directly by decreasing the engine, braking and rolling resistance losses, and indirectly by enabling a smaller, more efficiently operating engine to provide the same performance.
The Future Automotive Systems Technology Simulator (FASTSim) tool was used to quantify these impacts. FASTSim is the U.S. Department of Energy's (DOE's) high-level vehicle powertrain model developed at the National Renewable Energy Laboratory. It steps through a time versus speed drive cycle to estimate the powertrain forces required to meet the cycle. It simulates the major vehicle powertrain components and their losses. It includes a cost model based on component sizing and fuel prices.
FASTSim simulated different levels of lightweighting for four different powertrains. The four powertrains included a conventional gasoline engine vehicle, a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), and a battery electric vehicle (EV).
Weight reductions impacted the conventional vehicle efficiency more than the HEV, PHEV and EV. Although lightweighting impacted advanced vehicle efficiency less, it reduced component cost and overall costs more. Under the assumed current battery costs, however, the PHEV and EV were still more expensive than the conventional vehicle and HEV. Assuming the DOE's battery cost target of $125/kWh and improved battery life, however, the PHEV and EV attained similar cost and lightweighting benefits. Generally, lightweighting was cost effective when it cost less than $6/kg of mass eliminated.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

A Novel Battery Charging and Power Distribution System for a Series-Hybrid Two Wheeler


View Details


Analysis of Input Power, Energy Availability, and Efficiency during Deceleration for X-EV Vehicles


View Details


Switching Frequency Optimization of Boost Converter for HEV Applications


View Details