Browse Publications Technical Papers 2013-01-0463

The Impact of Underbody Roughness on Rear Wake Structure of a Squareback Vehicle 2013-01-0463

In this paper the effects of a rough underbody on the rear wake structure of a simplified squareback model (the Windsor model) is investigated using balance measurements, base pressure measurements and two and three component planar PIV. The work forms part of a larger study to develop understanding of the mechanisms that influence overall base pressure and hence the resulting aerodynamic drag. In the work reported in this paper the impact of a rough underbody on the base pressure and wake flow structures is quantified at three different ground clearances. The underbody roughness has been created through the addition of five roughness strips to the underbody of the model and the effects on the wake at ground clearances of 10.3%, 17.3% and 24.2% of the model height are assessed. All work has been carried out in the Loughborough University Large Wind Tunnel with a ¼ scale model giving a blockage ratio of 4.4% for a smooth under-body or 4.5% with the maximum thickness roughness strips. The tests are conducted with a fixed ground plane.
Results are presented for the base pressure distribution and these are compared against the stream-wise PIV results. This work demonstrates the need for rough underbody structures to be considered during base pressure investigations before any model scale work is conducted due to their influence on the wake structures.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Effects of Ground Simulation on the Aerodynamic Coefficients of a Production Car in Yaw Conditions


View Details


The Influence of a Horizontal Pressure Distribution on Aerodynamic Drag in Open and Closed Wind Tunnels


View Details


Comparison of Computational and Experimental Aerodynamics Results for a WMU Solar Car Model


View Details