Browse Publications Technical Papers 2013-01-1062

The Effects of CO, H 2 , and C 3 H 6 on the SCR Reactions of an Fe Zeolite SCR Catalyst 2013-01-1062

Selective Catalytic Reduction (SCR) catalysts used in Lean NOx Trap (LNT) - SCR exhaust aftertreatment systems typically encounter alternating oxidizing and reducing environments. Reducing conditions occur when diesel fuel is injected upstream of a reformer catalyst, generating high concentrations of hydrogen (H₂), carbon monoxide (CO), and hydrocarbons to deNOx the LNT. In this study, the functionality of an iron (Fe) zeolite SCR catalyst is explored with a bench top reactor during steady-state and cyclic transient SCR operation.
Experiments to characterize the effect of an LNT deNOx event on SCR operation show that adding H₂ or CO only slightly changes SCR behavior with the primary contribution being an enhancement of nitrogen dioxide (NO₂) decomposition into nitric oxide (NO). Exposure of the catalyst to C₃H₆ (a surrogate for an actual exhaust HC mixture) leads to a significant decrease in NOx reduction capabilities of the catalyst. A degradation mechanism is proposed to account for the decrease in NOx conversion efficiency, highlighted by reactions between NO₂ and C₃H₆ to make NO at a rate of similar order of magnitude as the Fast SCR reaction. This inhibits SCR reactions when the NO:NOx ratio favors NO, but can increase NOx conversion when the NO:NOx ratio favors NO₂.
Ammonia (NH₃) storage is only marginally affected by the presence of H₂, CO, or C₃H₆; but significant amounts of C₃H₆ can be stored on the catalyst. Further observation reveals that the oxidation effects of C₃H₆ are non-negligible and C₃H₆ strongly influences the oxidation of NH₃. The degradation mechanism includes seven proposed reactions to model the experimental results of adding H₂, CO, and C₃H₆ to the SCR feed gas during steady-state and transient operation.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 17% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Hydrocarbon Reactivity in a Plasma-Catalyst System: Thermal Versus Plasma-Assisted Lean NOx Reduction


View Details


Performance of Zeolite-Based Diesel Catalysts


View Details


Removal of Hydrocarbons and Particulate Matter Using a Vanadia Selective Catalytic Reduction Catalyst: An Experimental and Modeling Study


View Details