Browse Publications Technical Papers 2013-01-1459

System Design and Control Strategy for a Battery/Supercapacitor Electric Bus with an Integrated Fast Charger/Bus Stop Station 2013-01-1459

The purposes of this study are to 1) select a suitable size of dual energy sources, 2) develop a dynamic model for a battery/supercapacitor (SC) electric bus with an integrated fast charger/bus stop station, and 3) establish control strategies among the fast charger, batteries, and the SC module. For 1), a global search method was used to locate a suitable-sized battery set and SCs under a preset cost function and basic properties. The cost ratio (CR) was calculated to maximize the energy storage capacity.
For 2), 10 subsystems of the electric bus, including the driver maneuver, traction motor, the lithium battery module, the SCs, the onboard DC/DC converter, the longitudinal vehicle dynamics, accessories, and the transmission were constructed. For the fast charger/bus stop station, an AC/DC inverter was modeled. All modulized subsystems were then integrated into the vehicle/station simulator.
For 3), the 10-mode control strategy properly conducts energy management using rule-based control laws, which are functions of vehicle speed, state-of charges (SOCs) of dual energy sources, and driving conditions. The control output section delivers the commands to the subsystem controllers, relays, and converters/inverters. The fast charger/bus stop station charges batteries and SCs when proper commands were sent by the vehicle control unit (VCU). All simulation results demonstrate that the optimized sizing of dual energy sources, electric bus and charger dynamics, and VCU control strategies were successfully completed. The feasibility study and specification design of Taiwan's E-Bus with a fast-charge station will be conducted through this study in the near future.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Investigation of Proper Motor Drive Characteristics for Military Vehicle Propulsion


View Details


The RUF Concept, a Dual-Mode Electric/Hybrid Vehicle Riding on Top of a Very Slender Guideway


View Details


Electric Drivetrain for Hybrid Electric Bus


View Details