Browse Publications Technical Papers 2013-01-1462
2013-04-08

Ambient Temperature (20°F, 72°F and 95°F) Impact on Fuel and Energy Consumption for Several Conventional Vehicles, Hybrid and Plug-In Hybrid Electric Vehicles and Battery Electric Vehicle 2013-01-1462

This paper determines the impact of ambient temperature on energy consumption of a variety of vehicles in the laboratory. Several conventional vehicles, several hybrid electric vehicles, a plug-in hybrid electric vehicle and a battery electric vehicle were tested for fuel and energy consumption under test cell conditions of 20°F, 72°F and 95°F with 850 W/m₂ of emulated radiant solar energy on the UDDS, HWFET and US06 drive cycles.
At 20°F, the energy consumption increase compared to 72°F ranges from 2% to 100%. The largest increases in energy consumption occur during a cold start, when the powertrain losses are highest, but once the powertrains reach their operating temperatures, the energy consumption increases are decreased. At 95°F, the energy consumption increase ranges from 2% to 70%, and these increases are due to the extra energy required to run the air-conditioning system to maintain 72°F cabin temperatures. These increases in energy consumption depend on the air-conditioning system type, powertrain architecture, powertrain capabilities and drive patterns. The more efficient the powertrain, the larger the impact of climate control (heating or cooling) on the energy consumption.
A wealth of vehicle test data and analysis is used to explain the nuances of the behaviors of the different powertrain architectures at the different temperatures. Additionally, test procedure details, charge-sustaining challenges, cold-start penalties, cabin temperature pull-up and pull-down, idle fuel flow rates, engine operations, impact of degree of hybridization, and battery system resistances are discussed. The Appendix provides time history graphs of all the data.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
JOURNAL ARTICLE

The Measured Impact of Vehicle Mass on Road Load Forces and Energy Consumption for a BEV, HEV, and ICE Vehicle

2013-01-1457

View Details

STANDARD

Utility Factor Definitions for Plug-In Hybrid Electric Vehicles Using Travel Survey Data

J2841_201009

View Details

JOURNAL ARTICLE

Optimization of Electrified Powertrains for City Cars

2011-01-2451

View Details

X