Browse Publications Technical Papers 2013-01-1583

Development of a 3-D Model for Analyzing the Effects of Channel Geometry on Filtration Characteristics in Particulate Filter System 2013-01-1583

A three-dimensional (3-D) computational fluid dynamics (CFD) code has been developed to predict flow dynamics and pressure drop characteristics in geometry-modified filters in which the normalized distance of the outlet channel plugs from the inlet has been varied at 0.25, 0.50, and 0.75. In clean filter simulations, the pressure drop in geometry-modified filters showed higher values than for conventional filters because of the significant change in the pressure field formed inside the channel that determines the amount of flow entering the modified channel. This flow through the modified channel depends on plug position initially but has a maximum limit when pressure difference and geometrical change are compromised. For soot loading simulations, a Lagrangian multiphase flow model was used to interpret the hydrodynamics of particle-laden flow with realistic inputs. Such inputs include mass concentration and size distribution of the particulates in the diesel exhaust, which are measured directly from experiments. Pressure drop characteristics in the geometry-modified filter simulations showed promising potential advantages compared with conventional filters. Particle behaviors, in terms of boundary conditions, on each interface of the model were set independently and selectively to represent two main filtration regimes. Their distributions during the early stage of the filtration process are predicted at a 3-D channel scale. Validated model results show agreement with the analytical and experimental results.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Methodology for Modelling a Combined DPF and SCR Catalyst with the Porous Medium Approach in CFD


View Details


Determination of Polycyclic Aromatic Hydrocarbons (PAH) in Size Fractionated Diesel Particles from a Light Duty Vehicle


View Details


Internal Flow in a Scale Model of a Diesel Fuel Injector Nozzle


View Details