Browse Publications Technical Papers 2013-01-1591
2013-04-08

Optical Investigation of Injection and Combustion Phases of a Fouled Piezoelectric Injector in a Transparent CR Diesel Engine 2013-01-1591

This study was conducted to determine the effects of the fouling process on the piezoelectric injectors in a transparent common-rail diesel engine. Piezoelectric injectors are characterized by a ceramic actuator that can dilate or retract when it receives a pulse of current. The piezo element controls a valve, which creates an imbalance in the pressure that is exerted at each end of the needle, causing the needle rising or closing. Two same model injectors were tested; one was new and the other one was fouled on a vehicle. The aim of the experimental investigation was to evaluate the performance of a new and a fouled piezoelectric injector in terms of injection and flame evolution. It was evaluated how the nozzle carbon deposits affect the injection quantity and combustion. The experimental apparatus was a single-cylinder research engine equipped with a Euro 5 multi-cylinder head. A second-generation common rail injection system and 6-hole piezoelectric injectors were used too. The engine was optically accessible; a sapphire window was set in the bottom of an elongated piston. The engine was fuelled with commercial diesel fuel and it ran at 1500 rpm in continuous mode during the tests. Pressure signal in the engine was detected by a quartz pressure transducer that replaced the glow plug of the real engine. Injection rate was measured for both injectors. Optical techniques based on 2D-digital imaging were used to detect the injection phase and combustion evolution. A high speed camera captured the images from the combustion chamber reflected by a 45° inclined mirror set in the elongated piston. Steady-state measurements of nitrogen oxide and opacity were carried out in the raw exhaust by commercial instruments. It was found that piezoelectric injectors had a shorter injection delay than more traditional solenoid injectors whether they were new or fouled. The new injector guaranteed a good jet penetration that allowed a more efficient combustion than the fouled one. The main consequence was that the new injector produced lower exhaust emissions.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Conditional Moment Closure Approaches for Simulating Soot and NOx in a Heavy-Duty Diesel Engine

2021-24-0041

View Details

TECHNICAL PAPER

Investigation of Spray-Bowl Interaction Using Two-Part Analysis in a Direct-Injection Diesel Engine

2010-01-0182

View Details

JOURNAL ARTICLE

Insights into Cold-Start DISI Combustion in an Optical Engine Operating at −7°C

2013-01-1309

View Details

X