Browse Publications Technical Papers 2013-01-1596
2013-04-08

Spray Atomization Study on Multi-Hole Nozzle for Direct Injection Gasoline Engines 2013-01-1596

We investigated the size of fuel spray droplets from nozzles for direct injection gasoline (DIG) engines. Our findings showed that the droplet size can be predicted by referencing the geometry of the nozzle. In a DIG engine, which is used as part of a system to reduce fuel consumption, the injector nozzle causes the fuel to spray directly into the combustion chamber. It is important that this fuel spray avoid adhesion to the chamber wall, so multi-hole injection nozzles are used to obtain spray shape adaptability. It is also important that spray droplets be finely atomized to achieve fast vaporization. We have developed a method to predict the atomization level of nozzles for fine atomization nozzle design. The multi-hole nozzle used in a typical DIG injector has a thin fuel passage upstream of the orifice hole. This thin passage affects the droplet size, and predicting the droplet size is quite difficult if using only the orifice diameter. We therefore fabricated several multi-hole nozzles with different thin passage areas and hole diameters. We evaluated the spray from the nozzles and determined the relationship between nozzle geometry, flow rate, and droplet size. We also evaluated the outlet velocity in the orifice holes and plotted the relationship between droplet size and velocity. We found that droplet size can be described by velocity and that the velocity has a correlation with the nozzle geometry. We also discuss how the thin passage geometry on the velocity makes it possible to predict droplet size from the nozzle geometry.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Experimental and Numerical Approach to Fuel Spray Control for Fuel Injectors

2000-05-0104

View Details

TECHNICAL PAPER

Compensation Strategies for Aging Effects of Common-Rail Injector Nozzles

2019-01-0944

View Details

TECHNICAL PAPER

Characteristics of Fuel Sprays from Specially Shaped and Impinging Flow Nozzles

950082

View Details

X