Browse Publications Technical Papers 2013-01-1673

Dual-Fuel Effects on HCCI Operating Range: Experiments with Primary Reference Fuels 2013-01-1673

Results from a large set of HCCI experiments performed on a single-cylinder research engine fueled with different mixtures of iso-octane and n-heptane are presented and discussed in this paper. The experiments are designed to scrutinize fuel reactivity effects on the operating range of an HCCI engine. The fuel effects on upper and lower operating limits are measured respectively by the maximum pressure rise rate inside the cylinder and the stability of engine operation as determined by cycle-to-cycle variations in IMEP. Another set of experiments that examine the intake air heating effects on HCCI engine performance, exhaust emissions and operating envelopes is also presented. The effects of fuel reactivity and intake air heating on the HCCI ranges are demonstrated by constructing the operating envelopes for the different test fuels and intake temperatures. The paper discusses, in the light of the results, how the nonlinearity in fuel effects makes the dual fuel control approach less effective in extending the lower end of the HCCI load range. It also discusses how intake air heating affects the engine operation stability at low loads, and how varying fuel reactivity and intake heating can complement each other as an integrated control approach to extend both ends of the HCCI load range.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Influencing Parameters of the Exhaust Gas Emissions of a Stoichiometric Natural Gas Bus in Real Use


View Details


Engine Management System for Motorcycle


View Details


Lost-Motion VVA Systems for Enabling Next Generation Diesel Engine Efficiency and After-Treatment Optimization


View Details