Browse Publications Technical Papers 2013-01-1937

Enhancing the Performance of Microperforated Panel Absorbers by Designing Custom Backings 2013-01-1937

Micro-perforated (MPP) panels are acoustic absorbers that are non-combustible, acoustically tunable, lightweight, and environmentally friendly. In most cases, they are spaced from a wall, and that spacing determines the frequency range where the absorber performs well. The absorption is maximized when the particle velocity in the perforations is high. Accordingly, the absorber performs best when positioned approximately a quarter acoustic wavelength from the wall, and larger cavity depths improve the low frequency absorption. At multiples of one half acoustic wavelength, the absorption is minimal. Additionally, the absorption is minimal at low frequencies due to the limited cavity depth behind the MPP. By partitioning the backing cavity, the cavity depth can be strategically increased and varied. This will improve the absorption at low frequencies and can provide absorption over a wide frequency range. In this work, backing substrates have been developed to enhance the absorption performance. Maa's model is first reviewed. Then, different MPP and backing substrate combinations are analyzed using Maa's theory and the boundary element method. The broadband absorptive behavior is validated via measurement in a square impedance tube. Measured results agree reasonably well with analysis.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 40% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.