Browse Publications Technical Papers 2013-01-2119
2013-09-17

Simulation of Secondary and Separated Flow in a Serpentine Diffuser (S-Duct) for Air Breathing Propulsion 2013-01-2119

The focus of this paper is on the numerical simulation of compressible flow in a diffusing S-duct inlet; this flow is characterized by secondary flow as well as regions of boundary layer separation. The S-Duct geometry produces streamline curvature and an adverse pressure gradient resulting in these flow characteristics. The geometry used in this investigation is based on a NASA Glenn Research Center experimental diffusing S-Duct which was studied in the early 1990's. The CFD flow solver ANSYS - Fluent is employed in the investigation of compressible flow through the S-duct. A second-order accurate, steady, density-based solver is employed in a finite-volume framework. The three-dimensional Reynolds-Averaged Navier-Stokes (RANS) equations are solved on a structured mesh with a number of turbulence models, namely the Spalart - Allmaras (SA), k-ε, k-ω SST, and Transition SST models, and the results are compared with the experimental data. The computed results capture the flow field and pressure recovery with acceptable accuracy when compared to the experimental data. The turbulence model giving the best results is identified.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

CFD Analysis of Various Automotive Bodies in Linear Static Pressure Gradients

2012-01-0298

View Details

TECHNICAL PAPER

The Effect of Free Stream Turbulence on A-pillar Airflow

2009-01-0003

View Details

TECHNICAL PAPER

Wake Related Wind Tunnel Corrections for Closed Wall Test Sections

2006-01-0567

View Details

X