Browse Publications Technical Papers 2013-01-9118
2013-11-20

Drivetrain Energy Distribution and Losses from Fuel to Wheel 2013-01-9118

Depending on a vehicles drive cycle, an improvement of the overall drivetrain efficiency does not necessarily have to go along with an improvement of its mileage. In here the ratio of energy to overcome rolling resistance, aerodynamic drag, acceleration and energy wasted directly in wheel brakes is responsible for potentially differing trends.
A detailed knowledge of energy flows, sources and sinks makes up a substantial step into optimizing any drive train. Most fuel energy leaves the drivetrain via exhaust pipes. Next to usable mechanical energy, a big amount is spent to heat up the system directly or to overcome drive train friction, which is converted into heat to warm up the system additionally. An in depth quantification of the most important energy flows for an upper middle-sized class gasoline powered drive train is given as results of warm-up cycle simulations. Combustion engine heat losses are split into four paths to be compared with the heat of ten engine friction components. Total engine friction of engines, started at room temperature in low load cycles used for emission legislation, makes up about one third of the heat input of the thermal system.
Energy flow manipulation in terms of thermal management measures are quantified as well as secondary effects and benefits seen in a holistic approach covering all relevant paths from fuel to wheel. Investigated is the effect of a split cooling system, a map controlled thermostat, the use of an electric water pump and combinations of those for a cold started FTP75 test cycle. Split cooling yields a benefit of ∼ 2.2 - 2.4 % fuel reduction potential; the use of an electrical water pump shows ∼ 0.3 - 1.2 %. The benefit of a combination of both measures is simulated to∼ 2.3 - 2.5 %.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
We also recommend:
MAGAZINE

SAE Truck & Off-Highway Engineering: June 2017

17TOFHP06

View Details

TECHNICAL PAPER

Conceptualization and Implementation of a Scalable Powertrain, Modular Energy Storage and an Alternative Cooling System on a Student Concept Vehicle

2018-01-1185

View Details

TECHNICAL PAPER

Advanced Secondary Cooling Systems for Light Trucks

2005-01-1380

View Details

X