Browse Publications Technical Papers 2013-32-9069

Closed-Loop Combustion Control of a HCCI Engine with Re-Breathing EGR System 2013-32-9069

This study experimentally investigates the control system and the algorithm after constructing a HCCI combustion control system for the development of a small HCCI engine fuelled with Dimethyl Ether (DME). This system can control four throttles for the mixing ratio of three gases of in-cylinder (stoichiometric pre-mixture, hot EGR gas and cold EGR gas). At first, the combustion behavior for combustion phasing retarded operation with cold and hot EGR was examined. Then, the potential of model-based and feed back control for HCCI combustion with change of the demand of IMEP was investigated. In the end, the limit of combustion-phasing retard for IMEP and PRR was explored. Results shows that to get high IMEP with acceptable PRR and low coefficient of variation of IMEP, crank angle of 50% heat release (CA50) should be controlled at constant phasing in the expansion stroke. CA50 can be controlled by changing the ratio of pre-mixture, hot EGR gas and cold EGR gas with throttles. Due to the cycle-to-cycle variation, the change of total mass of fuel in cylinder has a big effect on IMEP. After misfire, unburned fuel and intermediates remain in exhaust gas, which is re-breathed as hot EGR gas, and unburned fuel and intermediates are supplied to next cycle. This leads to the total mass of fuel changes cycle-to-cycle. As a result of feedback control, transient performance is realized but high sensitivity of response cannot be achieved under the constant engine speed.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
We also recommend:

25cc HCCI Engine Fuelled with DEE


View Details


Dual-Wavelength PLIF Measurements of Temperature and Composition in an Optical HCCI Engine with Negative Valve Overlap


View Details


A Study on HCCI(Homogeneous Charge Compression Ignition) Gasoline Engine Supercharged by Exhaust Blow Down Pressure


View Details