Browse Publications Technical Papers 2014-01-0155
2014-04-01

Torque Vectoring Control for Distributed Drive Electric Vehicle Based on State Variable Feedback 2014-01-0155

Torque Vectoring Control for distributed drive electric vehicle is studied. A handling improvement algorithm for normal cornering maneuvers is proposed based on state variable feedback control: Yaw rate feedback together with steer angle feedforward is employed to improve transient response and steady gain of the yaw rate, respectively. According to the feedback coefficient's influence on the transient response, an optimization function is proposed to obtain optimum feedback coefficients under different speeds. After maximum feedforward coefficients under different speeds are obtained from the constraint of the motor exterior characteristic, final feedforward coefficients are calculated according to an optimal steering characteristic. A torque distribution algorithm is presented to help the driver to speed up during the direct yaw moment control. Simulations performing multiple maneuvers are carried out: The transient response and the steady gain of the yaw rate are improved; the direct yaw moment control can rectify the understeering caused by accelerating, balance the utilization of the road adhesion between two axles, and increase the lateral stability margin of the vehicle.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
We also recommend:
JOURNAL ARTICLE

Torque-Vectoring Control for an Autonomous and Driverless Electric Racing Vehicle with Multiple Motors

2017-01-1597

View Details

TECHNICAL PAPER

Simulation and Experimental Study of Torque Vectoring on Vehicle Handling and Stability

2009-28-0062

View Details

TECHNICAL PAPER

Control Allocation based Optimal Torque Vectoring for 4WD Electric Vehicle

2012-01-0246

View Details

X