Browse Publications Technical Papers 2014-01-0467
2014-04-01

Sample-Based Estimation of Vehicle Speeds from Yaw Marks: Bayesian Implementation Using Markov Chain Monte Carlo Simulation 2014-01-0467

The critical speed method uses measurements of the radii of yawmarks left by vehicles, together with values for centripetal acceleration, to estimate the speeds of the vehicles when the yawmarks were made. Several field studies have indicated that equating the centripetal force with braking friction produced biased estimates, but that the biases tended to be small (e.g. within 10%-15% on average) and led to underestimates, suggesting that the method can be useful for forensic purposes. Other studies, however, have challenged this conclusion. The critical speed method has also seen use in safety-related research, where it is important to have a reliable assessment of the uncertainty associated with a speed estimate. This paper describes a variant of the critical speed method, where data from field tests lead to an informative prior probability distribution for the centripetal acceleration. Using Bayes theorem, this distribution is combined with the measured radius to produce a posterior probability distribution for the desired speed. The required computations are readily carried out using Markov Chain Monte Carlo simulation. Calibration/Cross-validation tests, conducted using published data sets, in most cases found no significant differences between the actual and the nominal coverages of confidence intervals. For example, the 90% confidence intervals computed from the measured yaw radii tended to catch approximately 90% of the measured vehicle speeds.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Driver Distraction Monitoring and Adaptive Safety Warning Systems

2008-01-2694

View Details

TECHNICAL PAPER

Modeling of Tire Rolling Properties by Using Experimental Modal Parameters

2000-01-0361

View Details

JOURNAL ARTICLE

Research on Driving Posture Comfort Based on Relation between Drivers' Joint Angles and Joint Torques

2014-01-0460

View Details

X