Heat treated cast aluminum components like engine blocks and cylinder heads can develop significant amount of residual stress and distortion particularly with water quench. To incorporate the influence of residual stress and distortion in cast aluminum product design, a rapid simulation approach has been developed based on artificial neural network and component geometry characteristics. Multilayer feed-forward artificial neural network (ANN) models were trained and verified using FEA residual stress and distortion predictions together with part geometry information such as curvature, maximum dihedral angle, topologic features including node's neighbors, as well as quench parameters like quench temperature and quench media.
Subscribers can view annotate, and download all of SAE's content. Learn More »