Browse Publications Technical Papers 2014-01-1170
2014-04-01

Investigation of Cylinder Deactivation and Variable Valve Actuation on Gasoline Engine Performance 2014-01-1170

Increasingly stringent regulations on gasoline engine fuel consumption and exhaust emissions require additional technology integration such as Cylinder Deactivation (CDA) and Variable valve actuation (VVA) to improve part load engine efficiency. At part load, CDA is achieved by closing the inlet and exhaust valves and shutting off the fuel supply to a selected number of cylinders. Variable valve actuation (VVA) enables the cylinder gas exchange process to be optimised for different engine speeds by changing valve opening and closing times as well as maximum valve lift. The focus of this study was the investigation of effect of the integration of the above two technologies on the performance of a gasoline engine operating at part load conditions.
In this study, a 1.6 Litre in-line 4-cylinder gasoline engine is modelled on engine simulation software and simulated data is analysed to show improvements in fuel consumption, CO2 emissions, pumping losses and effects on CO and NOx emissions. A CDA and VVA operating window is identified which yields brake specific fuel consumption improvements of 10-20% against the base engine at engine speeds between 1000rpm to 3500rpm at approximately 12.5% load. Highest concentration of CO emissions was observed at between 4 to 5 bar BMEP at 4000rpm and highest concentration of NOx at the same load range but at 1000rpm.Findings based on simulation results point towards significant part load performance improvements which can be achieved by integrating cylinder deactivation and variable valve actuation on gasoline engines.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Comparing the Effect of a Swirl Flap and Asymmetric Inlet Valve Opening on a Light Duty Diesel Engine

2017-01-2429

View Details

TECHNICAL PAPER

Modeling HCCI Combustion With High Levels of Residual Gas Fraction - A Comparison of Two VVA Strategies

2003-01-3220

View Details

TECHNICAL PAPER

A Study on Charge Motion Requirements for a Class-Leading GTDI Engine

2017-24-0065

View Details

X