Browse Publications Technical Papers 2014-01-1351
2014-04-01

Optimal Catalytic Converter Heating in Hybrid Vehicles 2014-01-1351

In this paper, a hybrid optimal control problem (HOCP) for the optimal heating of the three-way catalytic converter is solved. We propose a model for a hybrid vehicle that beneath State of Charge and fuel consumption includes thermal system states like engine cooling water temperature and catalytic converter temperature. Since models for noxious emissions with appropriate computational demand are not yet available for optimization purposes, an artificial state that resembles the emissions produced is introduced. A hybrid optimal control problem is then formulated for the beginning of the FTP-75 drive cycle whose target is to minimize the energy loss during the catalytic converter and engine cooling water heating phase. The corresponding input values to be optimized are continuous variables as ignition angle and cylinder charge as well as discrete decisions such as different injection schemes. As additional constraint, an upper limit is imposed on the artificial emissions state. A self-developed algorithm is then used to optimize the system with respect to the constraints and results are presented accordingly. The results obtained provide a valuable help for the calibration of the catalytic heating process and to obtain a solution that fulfills today's complex legal requirements.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Computation of Minimum Achievable Fuel Consumption for Serial Hybrids

1999-01-2945

View Details

TECHNICAL PAPER

HyPACE - Hybrid Petrol Advance Combustion Engine - Advanced Boosting System for Extended Stoichiometric Operation and Improved Dynamic Response

2019-01-0325

View Details

TECHNICAL PAPER

Inner-Insulated Turbocharger Technology to Reduce Emissions and Fuel Consumption from Modern Engines

2019-24-0184

View Details

X