Browse Publications Technical Papers 2014-01-1358

Stochastic Knock Detection, Control, Software Integration, and Evaluation on a V6 Spark-Ignition Engine under Steady-State Operation 2014-01-1358

The ability to operate a spark-ignition (SI) engine near the knock limit provides a net reduction of engine fuel consumption. This work presents a real-time knock control system based on stochastic knock detection (SKD) algorithm. The real-time stochastic knock control (SKC) system is developed in MATLAB Simulink, and the SKC software is integrated with the production engine control strategy through ATI's No-Hooks. The SKC system collects the stochastic knock information and estimates the knock level based on the distribution of knock intensities fitting to a log-normal (LN) distribution. A desired knock level reference table is created under various engine speeds and loads, which allows the SKC to adapt to changing engine operating conditions. In SKC system, knock factor (KF) is an indicator of the knock intensity level. The KF is estimated by a weighted discrete FIR filter in real-time. Both offline simulation and engine dynamometer test results show that stochastic knock control with fixed length of finite impulse response (FIR) filter has slow and excessive retard issue when a significant knock event happens. To enhance the knock control response, an integrated feed-forward and feedback knock control strategy is employed. For the heavy knock events, a combination of gain scheduling and a fast retard is applied based on the detected KF. In addition, a variable length FIR filter is used to reduce the number of combustion cycles for KF estimation. The performance of the developed knock detection and control system is evaluated on a V6 3.5L turbocharged engine on a dynamometer test stand.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 17% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Model-Based Exhaust Pressure Control with Dynamic Feedforward for Engine Protection


View Details


Effect of Breathing Characteristics on the Performance in Spark-Ignition Engines


View Details


MBT Control Utilizing Crank Angle of Maximum Combustion Pressure


View Details