Browse Publications Technical Papers 2014-01-1615

Determination of GHG Emissions, Fuel Consumption and Thermal Efficiency for Real World Urban Driving using a SI Probe Car 2014-01-1615

A SI probe car, defined here as a normal commercial car equipped with GPS, in-vehicle FTIR tailpipe emission measurement and real time fuel consumption measurement systems, and temperature measurements, was used for measuring greenhouse gas emissions including CO2, N2O and CH4 under real world urban driving conditions. The vehicle used was a EURO4 emission compliant SI car. Two real world driving cycles/routes were designed and employed for the tests, which were located in a densely populated area and a busy major road representing a typical urban road network. Eight trips were conducted at morning rush hours, day time non-peak traffic periods and evening off peak time respectively. The aim is to investigate the impacts of traffic conditions such as road congestion, grade and turnings on fuel consumption, engine thermal efficiency and emissions. The time aligned vehicle moving parameters with fuel consumption and emission data enabled the micro-analysis of the correlations between these parameters. The trip average data for fuel consumption, thermal efficiency and emissions etc were calculated. The impact of vehicle's transient movements and traffic events on emissions were studied. VSP (Vehicle Specific Power) has been used for the determination of engine power output. The results show that the transient emissions were dominated by sharp accelerations occurred at traffic light and pedestrian crossing. The trip average CO2 and CH4 emissions had a good linear correlation with vehicle's average speed which is directly related to vehicle idle periods but no clear correlation between vehicle's speed and N2O emissions.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
We also recommend:

Diesel Cold Start into Congested Real World Traffic: Comparison of Diesel, B50, B100 for Gaseous Emissions


View Details


Development of Real World Representative Test Cycles and Measured Emission Rates for Selected Off-Road Spark Ignited Engines


View Details


Lower Emissions in Commercial Diesel Engines through Waste Heat Recovery


View Details