Browse Publications Technical Papers 2014-01-2220
2014-09-16

Effect of Unsteady Flow on Intercooler Performance 2014-01-2220

Two compact intercoolers are designed for the Rotax 914 aircraft engine to increase engine power and avoid engine knock. A study is performed to investigate the effects of unsteady airflow on intercooler performance. Both intercoolers use air-to-liquid cross flow heat exchangers with staggered fins. The intercoolers are first tested by connecting the four air outlets of the intercooler to a common restricted exit creating a constant back pressure which allows for steady airflow. The intercoolers are then tested by connecting the four air outlets to a 2.4 liter, 4 cylinder engine head and varying the engine speed from 6000 to 1200 RPM corresponding to decreasing flow steadiness. The test is performed under average flight conditions with air entering the intercooler at 180°F and about 5 psig. Results from the experiment indicate that airflow unsteadiness has a significant effect on the intercooler's performance. Temperature spread across the intercooler's outlets varies from 30°F to 5°F as airflow unsteadiness increases. The Stagnation pressure drop across the intercooler varies from 0.8 psi to 2.7 psi as airflow unsteadiness increases. The effectiveness of the intercooler without internal baffling is independent of the level of flow steadiness with a value of about 0.55. The effectiveness of the intercooler with an internal baffling system has a value of about 0.53 when disconnected from the engine and about 0.58 when connected to the engine. These results indicate that flow unsteadiness has a strong effect on intercooler performance and should be accounted for when designing and testing an intercooler.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

A BRIEF SURVEY of the PRINCIPLES of PRESSURE WATER COOLING

430122

View Details

TECHNICAL PAPER

A One Dimensional Model for Designing Pressure Swirl Atomizers

2005-01-2101

View Details

TECHNICAL PAPER

Energy Recovery Rate from an Electric Air-Cycle System under the Cruising Altitude and Speed

2019-01-1905

View Details

X