Browse Publications Technical Papers 2014-01-2612

Numerical Investigation to the Effect of Ethanol/Gasoline Ratio on Charge Cooling in an EDI+GPI Engine 2014-01-2612

The work reported in this paper contributes to understanding the effects of ethanol/gasoline ratio on mixture formation and cooling effect which are crucial in the development of EDI+GPI engine. The spray simulations were carried out using a commercial CFD code. The model was verified by comparing the numerical and experimental results of spray shapes in a constant volume chamber and cylinder pressure in an EDI+GPI research engine. The verified model was used to investigate the fuel vaporization and mixture formation of the EDI+GPI research engine. The effect of the ethanol/gasoline ratio on charge cooling has been studied. Compared with GPI only, EDI+GPI demonstrated stronger effect on charge cooling by decreased in-cylinder temperature. However, the cooling effect was limited by the low evaporation rate of the ethanol fuel due to its lower saturation vapour pressure than gasoline's in low temperature conditions. The cooling effect of EDI increased with the increase of ethanol/gasoline ratio until the ratio reached 58% (by volume). Further increase of ethanol/gasoline ratio did not improve the cooling effect, but left more liquid ethanol droplets in the combustion chamber by the time of spark. This could lead to incomplete combustion and explained the increased CO and HC emissions with the increase of ethanol content as reported in the experiments. The cooling potential and the completeness of ethanol evaporation were two completing factors that determine the final cooling effect of EDI. This implied the existence of ethanol/gasoline ratio 40-50% which can optimize the cooling effect and combustion performance.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Study of Gasoline-Ethanol Jet Behaviour using the Lattice Boltzmann


View Details


Flame Propagation of Bio-Ethanol in a Constant Volume Combustion Chamber


View Details


Combustion Characteristics of PRF and TSF Ethanol Blends with RON 98 in an Instrumented CFR Engine


View Details