Browse Publications Technical Papers 2014-01-2641

Unsteady Three-Dimensional Computational Experiments of the Single-Point Auto-Ignition Engine Based on Semispherical Supermulti-Jets Colliding with Pulse for Automobiles 2014-01-2641

Supercomputer simulations substantiate a high potential of the new compressive combustion principle based on supermulti-jets colliding with pulse, which was previously proposed by us and can maintain high compression ratio for various air-fuel ratios. An original governing equation extended from the stochastic Navier-Stokes equation lying between the Boltzmann and Langevin equations is proposed and the numerical methodology based on the multi-level formulation proposed previously by us is included. For capturing instability phenomena, this approach is better than direct numerical simulation (DNS) and large eddy simulation (LES). A simple two-step chemical reaction model modified for gasoline is used. A small engine having a semispherical distribution of seventeen jets pulsed is examined here. Pulse can be generated by a rotary plate valve, while a piston of a short stroke of about 65mm is also included. Computations from 2,000 rpm to 20,000rpm at some loads for the present engine having supermulti-jets colliding with pulse and conventional super- or turbo-charged system are done, which show a high thermal efficiency over 60%, because there is very less heat loss on combustion chamber and piston surface. Emphasis is also placed on the fact that, in this new engine (Fugine), higher compression results in less combustion noise.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Design Guidelines of the Single-Point Auto-Ignition Engine based on Supermulti-Jets Colliding for High Thermal Efficiency and Low Noise: Obtained by Computational Experiments for a Small Strongly-Asymmetric Double-Piston Engine


View Details


Computational Development of a Dual Pre-Chamber Engine Concept for Lean Burn Combustion


View Details


An Experimental Database Dedicated to the Study and Modelling of Cyclic Variability in Spark-Ignition Engines with LES


View Details