Browse Publications Technical Papers 2014-01-2873

Study of Valve Seat Landing Stiffness and Damping 2014-01-2873

As the key parameters, stiffness and damping coefficient significantly influence on dynamic simulation result, which is the mean method of valve train design. This research aims to investigate the relation between landing velocity (vL), contact duration (Δt), contact force (FN), friction force (FK), loss of valve kinetic energy (ΔWV) on the landing impact between valve and seat insert. Tests were carried out on Over-Head-Cam Valve-train (OHC). Firstly, valve and seat insert contact stiffness in static state was measured, nonlinear increasing of stiffness was observed, because of contact area changing with load. Secondly, valve and seat dynamic impact tests were carried out in different landing velocities. Based on valve contact model, contact force (FN), friction force (FK) and sliding distance (SL) were got by test data. As the result, contact stiffness and damping coefficient in dynamic state were analyzed. Different with linear constant parameter assumption, contact stiffness and damping coefficient in dynamic state increase with landing velocity. Investigating of the stiffness and damping coefficient under the action of impact-sliding would help to gain better understanding of the impact mechanisms. And contact force (FN) and sliding distance (SL) can be used as edge-restraint condition in valve-train design.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 17% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

A Study of Wear in Engine Exhaust Valve Depending on Valve Materials Using a Laboratory Simulator


View Details


A Numerical Study on the Application of Järvi Mechanism to a Four Stroke Engine for Motorcycle Application


View Details


Application of Design of Experiments to Determine the Leading Contributors to Engine Valvetrain Noise


View Details