Browse Publications Technical Papers 2015-01-0190
2015-04-14

Methods for Prediction, Simulation and Verification of Real-Time Software Architectural Design based on Machine Learning Algorithms 2015-01-0190

In embedded system software architectural design, the Real-Time (RT) behavior estimation needs special care and contains many technical challenges. Most of the current approaches depend on either the engineering judgment or the actual measurements that are performed during the integration-testing phase. Both approaches may cause errors that lead to violations in the RT constraints. Both approaches are not error proof and can yield to RT constraints violations discovered during simulation of RT architectural design or during product validation. Impact on project could even be a Central Processing Unit (CPU) change.
In this work, Operating System (OS) process Execution Time (ET) is considered the basic element of RT architectural design. Each process ET is predicted based on previous software releases, using Machine Learning (ML) algorithms. Different types of extracted feature vectors of a software release (e.g. number of static architecture requirements, hardware factor, and seniority index) are proposed to be inputs to ML multiple classifiers to predict OS processes ETs. The used ML algorithms (e.g. Support Vector Machine Regression, Extreme Learning Machine, and Neural Networks) are compared, in terms of the prediction performance, using practical case studies, which contain AUTOSAR Application (APP) and Basic Software (BSW) module, with proven results.
The predicted ETs are given as inputs to OS modeling, simulation and verification tool. This tool is used in RT architectural design (e.g. design of the OS Tasks/ISRs configurations), OS behavior modeling and simulation and RT verification (missed deadlines, extra CPU load, etc…). Using this method, the architects can predict OS process ET, design, verify and refine the RT architecture either at the early phase of the project or before the coding phase. Summary, conclusion with proven results and future work are illustrated.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
JOURNAL ARTICLE

Real-time Pedestrian Detection using Convolutional Neural Network on Embedded Platform

2016-01-1877

View Details

TECHNICAL PAPER

Application of Robust Engineering Methods to Improve ECU Software Testing

2006-01-1600

View Details

TECHNICAL PAPER

A Rapid Prototyping Methodology for the Decision Making Algorithms in Automotive Electronic Systems

2002-01-0754

View Details

X