Browse Publications Technical Papers 2015-01-0356
2015-04-14

One-Dimensional Solar Heat Load Simulation Model for a Parked Car 2015-01-0356

Passenger comfort and safety are major drivers in a typical automotive design and optimization cycle. Addressing thermal comfort requirements and the thermal management of the passenger cabin within a car, which involves accurate prediction of the temperature of the cabin interior space and the various aggregates that are present in a cabin, has become an area of active research. Traditionally, these have been done using experiments or detailed three-dimensional Computational Fluid Dynamics (CFD) analysis, which are both expensive and time-consuming. To alleviate this, recent approaches have been to use one-dimensional system-level simulation techniques with a goal to shorten the design cycle time and reduce costs.
This paper describes the use of Modelica language to develop a one-dimensional mathematical model using Modelica language for automotive cabin thermal assessment when the car is subjected to solar heat loading. The developed model has the capability to predict the thermal response of a car cabin and its internal aggregates, such as seats, dashboards, roof, etc. for hot day solar loading conditions. A solar radiation model is established to capture the solar radiation that included movement of the sun position with time. In addition, the model included natural convection heat transfer and solid conduction effects for precise prediction of cabin aggregates temperature.
The developed one-dimensional model is validated by comparing its predictions against the prediction of a high-resolution three-dimensional CFD model for a range of boundary and operating conditions. The results show an excellent agreement with CFD results with the temperatures being predicted to within ±2 K of that predicted by the CFD model.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

A 1D Method for Transient Simulations of Cooling Systems with Non-Uniform Temperature and Flow Boundaries Extracted from a 3D CFD Solution

2015-01-0337

View Details

TECHNICAL PAPER

A Multi-Dimensional Approach to Truck Underhood Thermal Management

2001-01-2785

View Details

TECHNICAL PAPER

Improving Truck Underhood Thermal Management Through CFD

2002-01-1027

View Details

X