Browse Publications Technical Papers 2015-01-0750

Validation of Turbulent Combustion and Knocking Simulation in Spark-Ignition Engines Using Reduced Chemical Kinetics 2015-01-0750

Downsizing or higher compression ratio of SI engines is an appropriate way to achieve considerable improvements of part load fuel efficiency. As the compression ratio directly impacts the engine cycle thermal efficiency, it is important to increase the compression ratio in order to reduce the specific fuel consumption. However, when operating a highly boosted / downsized SI engine at full load, the actual combustion process deviates strongly from the ideal Otto cycle due to the increased effective loads requiring ignition timing delay to suppress abnormal combustion phenomena such as engine knocking. This means that for an optimal design of an SI engine between balances must be found between part load and full load operation. If the knocking characteristic can be accurately predicted beforehand when designing the combustion chamber, a reduction of design time and /or an increase in development efficiency would be possible. A turbulent combustion simulation is required to estimate the pressure and temperature trace in the cylinder for knocking analysis.
In this research, the verification for the turbulent combustion and knocking were done by using the detailed chemistry solver with multi-zone modeling integrated into CONVERGE CFD code. Thereby, it was found that a reduced reaction model can reproduce turbulent combustion and knocking phenomenon under some operation conditions. The verification results show that the pressure trace in the cylinder, Knocking timing and position can be validated with experiment results accurately.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Analysis of Knocking Mechanism Applying the Chemical Luminescence Method


View Details


A Thermodynamic Study on Boosted HCCI: Experimental Results


View Details


A Study of the Effects of Varying the Supercharging Pressure and Fuel Octane Number on Spark Ignition Engine Knocking using Spectroscopic Measurement and In-cylinder Visualization


View Details