Browse Publications Technical Papers 2015-01-0933
2015-04-14

Investigation of the Impact of Impingement Distance on Momentum Flux Rate of Injection Measurements of a Diesel Injector 2015-01-0933

Diesel combustion and emissions is largely spray and mixing controlled. Spray and combustion models enable characterization over a range of conditions to understand optimum combustion strategies. The validity of models depends on the inputs, including the rate of injection profile of the injector. One method to measure the rate of injection is to measure the momentum, where the injected fuel spray is directed onto a force transducer which provides measurements of momentum flux. From this the mass flow rate is calculated. In this study, the impact of impingement distance, the distance from injector nozzle exit to the anvil connected to the force transducer, is characterized over a range of 2 - 12 mm. This characterization includes the impact of the distance on the momentum flux signal in both magnitude and shape. At longer impingement distances, it is hypothesized that a peak in momentum could occur due to increasing velocity of fuel injected as the pintle fully opens. The study is completed at injection pressures of 620 and 2000 bar at 1 bar charge gas pressure, for 50 injection events per condition. The data is supplemented with micro-photography images of the first injection event to validate the impingement of the fuel spray on the anvil for complete momentum transfer. Results show no significant influence of impingement distance on peak momentum and a wide range of recommended impingement distances between 4 - 12 mm. At 2 mm impingement distance there is some anomalies in the behavior which is attributed to the gaseous momentum influence of neighboring sprays.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
JOURNAL ARTICLE

Experimental Investigation of Homogeneous Charge Induced Ignition (HCII) with Low-Pressure Injection to Reduce PM Emissions in a Heavy-Duty Engine

2016-01-0775

View Details

TECHNICAL PAPER

Experimental Characterization of Flat-Spray Injector in Gasoline Direct Injection Engines

2003-01-0061

View Details

TECHNICAL PAPER

Fuel Spray Penetration in High Pressure Diesel Engines

2007-01-0066

View Details

X