Browse Publications Technical Papers 2015-01-1034

Impact of SCR Integration on N 2 O Emissions in Diesel Application 2015-01-1034

Significant reduction in Nitrogen Oxide (NOx) emissions will be required to meet LEV III/Tier III Emissions Standards for Light Duty Diesel (LDD) passenger vehicles. As such, Original Equipment Manufacturers (OEMs) are exploring all possible aftertreatment options to find the best balance between performance, durability and cost. The primary technology adopted by OEMs in North America to achieve low NOx levels is Selective Catalytic Reduction (SCR). The critical parameters needed for SCR to work properly are: an appropriate reductant such as ammonia (NH3) provided as Diesel Exhaust Fluid (DEF), which is an aqueous urea solution 32.5% concentration in weight with water (CO(NH2)2 + H2O), optimum operating temperatures, and optimum nitrogen dioxide (NO2) to NOx ratios (NO2/NOx). The NO2/NOx ratio is most influenced by Precious Group Metals (PGM) containing catalysts upstream of the SCR catalyst. Different versions of zeolite based SCR technologies are available on the market today and these vary in their active metal type (iron, copper, etc.), and/or zeolite type. To select an appropriate SCR type, the application's operating conditions as well as environmental factors must be considered. In order to fundamentally understand these differences, a study was conducted where various factors were investigated for the Tail Pipe (TP) N2O emissions. They include 1) aftertreatment architectural differences, 2) individual component contribution to the overall N2O make and 3) choice of specific component such as Ammonia Slip Catalyst (ASC) or its omission on the TP N2O emissions. Results highlight the advantages and disadvantages of each factor to the overall TP N2O emissions.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 16% off list price.
Login to see discount.
We also recommend:

SCR Architectures for Low N2O Emissions


View Details


Diesel Cold-Start Emission Control Research for 2015-2025 LEV III Emissions - Part 2


View Details


Enhanced Low-Temperature NOx Conversion by High-Frequency Hydrocarbon Pulsing on a Dual Layer LNT-SCR Catalyst


View Details