Browse Publications Technical Papers 2015-01-1184
2015-04-14

Thermal Management of Lithium-Ion Pouch Cell with Indirect Liquid Cooling using Dual Cold Plates Approach 2015-01-1184

The performance, life cycle cost, and safety of electric and hybrid electric vehicles (EVs and HEVs) depend strongly on their energy storage system. Advanced batteries such as lithium-ion (Li-ion) polymer batteries are quite viable options for storing energy in EVs and HEVs. In addition, thermal management is essential for achieving the desired performance and life cycle from a particular battery. Therefore, to design a thermal management system, a designer must study the thermal characteristics of batteries. The thermal characteristics that are needed include the surface temperature distribution, heat flux, and the heat generation from batteries under various charge/discharge profiles. Therefore, in the first part of the research, surface temperature distribution from a lithium-ion pouch cell (20Ah capacity) is studied under different discharge rates of 1C, 2C, 3C, and 4C. In the second part of the research, the total heat generation from a particular battery is obtained under different discharge rates (1C, 2C, 3C, and 4C) and different boundary conditions (cooling bath temperature of 5°C, 15°C, 25°C, and 35°C). In the third part of the research, the heat flux profile is studied at three different locations on the top surface of the pouch cell (first, near the cathode; second, near the anode; and third, at the center of the cell along the height of the cell) using heat flux sensors. In the fourth part of the research, thermal images from a lithium-ion pouch cell are obtained at different discharge rates to qualitatively evaluate the thermal behaviour and temperature distribution. A “FLIR System” Therma CAM model S60 IR camera is used to obtain thermal images.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 18% off list price.
Login to see discount.
We also recommend:
TECHNICAL PAPER

Integrating Thermal and Electrochemical Modeling of Lithium-ion Batteries to Optimize Requirements Compliance

2015-01-1185

View Details

JOURNAL ARTICLE

Design and Thermal Analysis of a Passive Thermal Management System Using Composite Phase Change Material for Rectangular Power Batteries

2015-01-0254

View Details

TECHNICAL PAPER

Estimating the Power Limit of a Lithium Battery Pack by Considering Cell Variability

2015-01-1181

View Details

X