Browse Publications Technical Papers 2015-01-1369
2015-04-14

Thin-Walled Compliant Mechanism Component Design Assisted by Machine Learning and Multiple Surrogates 2015-01-1369

This work introduces a new design algorithm to optimize progressively folding thin-walled structures and in order to improve automotive crashworthiness. The proposed design algorithm is composed of three stages: conceptual thickness distribution, design parameterization, and multi-objective design optimization. The conceptual thickness distribution stage generates an innovative design using a novel one-iteration compliant mechanism approach that triggers progressive folding even on irregular structures under oblique impact. The design parameterization stage optimally segments the conceptual design into a reduced number of clusters using a machine learning K-means algorithm. Finally, the multi-objective design optimization stage finds non-dominated designs of maximum specific energy absorption and minimum peak crushing force. The proposed optimization problem is addressed by a multi-objective genetic algorithm on sequentially updated surrogate models, which are optimally selected from a set of 24 surrogates. The effectiveness of the design algorithm is demonstrated on an S-rail thin-walled structure. The best compromised Pareto design increases specific energy absorption and decreases peak crushing force in the order of 8% and 12%, respectively.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 43% off list price.
Login to see discount.
Special Offer: With TechSelect, you decide what SAE Technical Papers you need, when you need them, and how much you want to pay.
X