Browse Publications Technical Papers 2015-01-1693

The Characterisation of a Centrifugal Separator for Engine Cooling Systems 2015-01-1693

It is an engineering requirement that gases entrained in the coolant flow of an engine must be removed to retain cooling performance, while retaining a volume of gas in the header tank for thermal expansion and pressure control. The main gases present are air from filling the system, exhaust emissions from leakage across the head gasket, and also coolant vapour. These gases reduce the performance of the coolant pump and lower the heat transfer coefficient of the fluid. This is due to the reduction in the mass fraction of liquid coolant and the change in fluid turbulence. The aim of the research work contained within this paper was to analyse an existing phase separator using CFD and physical testing to assist in the design of an efficient phase separator.
This study analysed a commercially available phase separator of the ‘swirl pot’ type using CFD to provide a benchmark performance of the gas extraction efficiency and to analyse the flow characteristics using both Eulerian-Lagrangian and Eulerian-Eulerian models. This data was compared to physical test data taken on a newly commissioned engine cooling system test rig and conclusions were drawn about the suitability of the CFD models. This initial report is the first in a series to produce the data required to provide a suitable design tool to design higher efficiency centrifugal phase separators. These are now required to increase the efficiency of cooling systems as the cooling demands increase with new high energy-density engines.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 17% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Determination of Time Variant 1D-3D Temperature and Heat Transfer Distribution Inside the Cooling Jacket of a SI Engine Cooling System after Key-Off


View Details


A High Resolution 3D Complete Engine Heat Balance Model


View Details


Heavy Duty Vehicle Cooling Test Code


View Details