Browse Publications Technical Papers 2015-01-2010

A Quasi Two Dimensional Model of Transport Phenomena in Diesel Particulate Filters - The Effects of Particle and Wall Pore Diameter on the Pressure Drop - 2015-01-2010

Experimental and numerical studies were conducted on diesel particulate filters (DPFs) under different soot loading conditions and DPF configurations. Pressure drops across DPFs with various mean pore diameters loaded with soots having different mean particle diameters were measured by introducing exhaust gases from a 2.2 liter inline four-cylinder, TCI diesel engine designed for use in passenger cars. A mechanistic hypothesis was then proposed to explain the observed trends, accounting for the effects of the soot loading regime in the wall and the soot cake layer on the pressure drop. This hypothesis was used to guide the development and validation of a numerical model for predicting the pressure drop in the DPF. The relationship between the permeability and the porosity of the wall and soot cake layer was modeled under various soot loading conditions. An equation predicting the porosity of the soot-coated wall and the soot cake layer was derived as a function of the mean diameter of secondary soot particles. The percolation coefficient at which the soot filtering regime changed from wall trapping to cake layer trapping was also determined by considering the filtering efficiency. The model was validated by comparing its output to the results of experimental test cell studies and used to analyze transport phenomena in particular filters.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Multichannel Simulation of Soot Oxidation in Diesel Particulate Filters


View Details


Estimation of DPF Soot Loading through Steady-State Engine Mapping and Simulation for Automotive Diesel Engines Running on Petroleum-Based Fuels


View Details


Measuring the Fractional Efficiency of Diesel Particulate Filters


View Details