Browse Publications Technical Papers 2015-01-9082
2015-05-01

Comparative Study of ANN and ANFIS Prediction Models For Turning Process in Different Cooling and Lubricating Conditions 2015-01-9082

The most efficient way to reduce friction and heat generation at the cutting zone is to use advanced cooling and lubricating techniques. In this paper, an experimental study was performed to investigate the capabilities of conventional, minimal quantity lubrication (MQL) and high pressure cooling (HPC) in the turning operations. Process parameters (feed, cutting speed and depth of cut) are used as inputs to the developed artificial neural network (ANN) and the adaptive networks based fuzzy inference systems (ANFIS) model for prediction of cutting forces, tool life and surface roughness. Results obtained by the models have been compared for their prediction capability with the experimentally determined values and very good agreement with experimental results was observed.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 43% off list price.
Login to see discount.
Special Offer: Purchase more aerospace standards and aerospace material specifications and save! AeroPaks off a customized subscription plan that lets you pay for just the documents that you need, when you need them.
X