Browse Publications Technical Papers 2015-24-2440

Potentials of the Miller Cycle on HD Diesel Engines Regarding Performance Increase and Reduction of Emissions 2015-24-2440

A variable air path on diesel engines offers further potentials to manage the challenges of engine development - such as reduction of emissions and fuel consumption, as well as performance increase. The Miller cycle is one of the possibilities, which is well known as an effective way to reduce process temperatures and so NOX emissions. The present paper discusses the potentials of this strategy for heavy duty diesel engines by identifying and analyzing the effects caused.
The investigations were carried out in the upper load range. First the isolated effect of the Miller cycle was analyzed. The results show reduced NOX emissions, although increased PM and CO emissions were measured. Further, the Miller cycle caused a reduction in peak cylinder pressure. This pressure reserve can be used to combine the Miller cycle with further measures while maintaining the maximum cylinder pressure of the reference operation point. On the one hand, a performance increase of about 10% was achieved. On the other hand, the combination of Miller cycle and increased boost pressure showed great potential to optimize the NOX-PM trade-off and led to an efficiency rise. To understand the effects caused, the losses of the process were separated and compared with the reference operation point.
The experimental tests were carried out on a single cylinder heavy duty test engine equipped with an in-house developed camless valve actuation system, and operated in a flexible test environment.


Subscribers can view annotate, and download all of SAE's content. Learn More »


Members save up to 18% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:

Effects of Late Intake Valve Closing Timing on Thermal Efficiency and Emissions Based on a Two-stage Turbocharger Diesel Engine


View Details


Efficiency and Emissions Mapping of RCCI in a Light-Duty Diesel Engine


View Details


Fuel Pressure and Charge Motion Effects on GDi Engine Particulate Emissions


View Details